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Summary:

The main goal of this research was to improve control authority in structural systems
through methodical stiffness variation. Our early work focused on variation in stiffness of
a cantilever beam under the application of a buckling-type end force and control designs
based on switching of the end force. A cable was used to apply the end force on the
beam, and towards the end of the project our modeling, control, and experimental
methods were successfully extended to truss-like structures. An important extension of
the work was tuning of beam-type MEMS resonators through stiffness variation brought
about by application of follower and axial end forces. In addition to the work on control
using end forces, switching strategies were developed for piezoelectric transducers to
enhance controllability and observability of flexible structures. By switching the
transducers between actuator and sensor modes, we demonstrated the possibility of
reducing control system hardware, both theoretically and experimentally. A significant
portion of our work investigated modal energy redistribution in flexible structures due to
stiffness variation with the underlying objective of simplifying control design. In the
sequel we provide some of the important results obtained in course of our research.

(A) Vibration Suppression in a Cantilever Beam using a Buckling-Type End Force:

Consider the cantilever beam with end force P as shown in Fig.A1. Assuming Euler-
Bernoulli beam theory and small deflections, it can be shown that P is a buckling-type
end force (with an instability limit four times higher than the usual buckling load) and the

Uequation of motion of the beam in Fig.AI can be written as follows

-1 =x 2, x2 =-Kx - Dx2 + Cx1U (1)

Figure Al. A flexible cantilever beam with an end force

O where, x, and x2 are vectors of modal displacements and velocities, u = P is the control

Oinput. D is the matrix of modal damping, and K and C are given in Nudehi, et al. (2006).
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The task of vibration suppression is to design the control input u that remains below the
buckling load and guarantees asymptotic stability of the equilibrium (x,x 2 ) = (0,0). This
goal can be achieved with the control system block diagram in Fig.A2, shown below
(Nudehi, et al., 2006).
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Figure A2. Control design based on bias tension and output filtering

The low-pass filter discards high frequency components and eliminates the requirement
of high actuator bandwidth without adversely affecting the stability of the system. The
memoryless nonlinearity is introduced to represent the fact that the cable can only
provide a compressive force on the beam, and is defined as

o  for z_!E

h(z)= 1oz /cfor 0<z<,- (2)

for z<0

In Fig.A2, P denotes the bias tension in the cable. There are two main advantages of
applying a bias tension in the cable and these are discussed in Nudehi, et al. (2006).

piezo ectric senlor . dc motor on pede l l

cantilever bcam:
1 1.25m x O.05ni x 0.003ni

bor cable %k r;ip arou)tntl Kc ;ircabl"

Figure A3. Experimental setup

We conducted experiments with the cantilever beam shown in Fig.A3. In our
experiments, we considered the first two modes of the beam. The results in Fig.A4 were
obtained with different combinations of bias tension, P, and the maximum control force,
P. For all three experiments, the value of r was kept fixed at 0.2 secs. The results
demonstrate the efficacy of our control design.
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Figure A4. Vibration suppression in a cantilever beam using a buckling-type end force.

(B) MEMS Resonator Tuning using Follower and Axial End Forces:

The goal of this effort was to achieve significant improvements in the available tuning
range of MEMS resonators by using a novel configuration of comb drives to provide end
loads on a vibrating micro-beam. The basic mechanics can be demonstrated using a
simple micro-cantilever beam model which has both a follower force F and an axial end
load P applied to its free end, as shown in dimensionless form in Fig.B1. Under the
usual assumptions of the elementary theory of bending, one can solve for the natural
frequencies of the beam for different values of the follower force, o, and axial force, q.
Of particular interest here is the variation in the fundamental natural frequency of the
beam with variation in the magnitude of the axial force when the follower force is zero
(Fig.132a), and variation in the frequencies of the beam with variation in the magnitude of
the follower force when the axial force is zero (Fig.B2b). This can be exploited in the
design of MEMS resonators whose first natural frequency can be tuned up or down
through the application of axial and follower end forces (Singh, et al., 2005).

-\ani c\ 'r lic'1l

Figure BI. A MEMS cantilever beam with axial and follower end forces
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Figure B2. Variation in natural frequency with change in (a) axial force (b) follower force

A schematic of the resonator, shown in Fig.B3, has a set of anterior combs for the
application of the end force (axial or follower) and an additional set of lateral combs for
actuation and sensing. The actuator combs were used to provide sinusoidal excitation for
resonance whereas the sensor combs were used for real-time measurement of the beam
deflection. Although the beam motions will remain small, all curved elements were
designed by taking the local radius of curvature of the beam deflection (corresponding to
the first mode shape) into consideration. This ensured that the gaps between the fixed and
moving elements remained constant and prevented potential malfunctioning due to
varying gap size or mechanical contact.

For the MEMS resonator in Fig.B3, (details in Singh et al., 2005) the first natural
frequency was approximately 7.5 KHz. To realize a pure follower force, voltages V, and
V., at the fixed elements A and B, were found to be

V(a-/3)sin[(a +,8)/2 (3)

and_

,,-V = V V(a-- O)sin[(a +6fl)/2] .(4)

For a purely axial force, the voltages
are

V (a - [3 )sin[(a + /M_ / 21,,II , rI ud I,, 1,,0V = (V° -/+ O)sin[(a +/5)/21 (5)

-11), - - 25!t

5401 and

Figure B3. MEMS resonator designed at MSU V - fl)sin[(a +/5+ 0)/2]
V/1= 0 .I (6)

where. a, /5, and 0 are defined in Singh, et al., (2005). For V = 70 volts, it can be
shown that the first natural frequency can be tuned down by 425 Hz and tuned up by i.1
KHz. Thus. bi-directional frequency tuning of 1.5 KHz, that is, 20%, can be achieved.
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(C) Enhancing Controllability and Observability by Switching Piezo Transducers:

The problem of vibration suppression in flexible structures, such as space structures,
typically requires large number of sensors and actuators for sensing and control of multi-
modal vibration. The sensors and actuators commonly used in the flexible structures are
piezoelectric transducers (PZT) and the hardware associated with these transducers add
significantly to the cost and weight of the system. For example, the power amplifiers used
for piezoelectric actuators are much more expensive than the actuators themselves and
contribute to the bulk of the weight of the complete control system. A large number of
sensors, on the other hand, require a large number of analog-to-digital conversion
channels in the data acquisition hardware. To reduce cost, weight, and volume of
hardware required for the control system, switching strategies have been developed for
sensing and control. Based on the theorem stated below, we have proposed to
continuously switch the roles of the PZT actuators and sensors so as to obtain a system
with an effective number of actuators and an effective number of sensors that is equal to
the total number of PZT elements on the flexible structure. This approach can potentially
reduce the number of actuators and sensors by 50%.

The basic theory is as follows. Consider the linear time-varying system that
switches between the following two descriptions:

Y- : = Ax + Bu y =Cix

Y2 " x=Ax+B 2u Y 2 =C 2x
If x = (xIxx )I, where xcRP is controllable and observable (CO) for both , and 2

xcR ,  q # 0, is controllable but unobservable (CO) for YX and uncontrollable but

observable (CO) for Y 2, and x 3ER', r 0 0, is CO for Y- and CO for 2, then:
(1) {A,B,} , {A,B 2} are not completely controllable but {A,[B,,B 2]} is controllable,

(2) {A,CI }, {A,C 2) are not completely observable but {A,[C ,C'] 7  is observable
(3) All the states of the switched system can be steered to the origin in finite time using
estimated states if and only if the number of switchings is two or more.

A proof of this result can be found in the paper by Nudehi, et al. (2004).

A cantilever beam can be described using Eq.(7) when the piezo-transducers guarantee
controllability when all of them are actuators and they guarantee observability when all
of them are sensors. Thus, simple Luenberger observers can be designed for the sub-
systems which results in the two closed-loop systems

X=AX, X =A, 2X, A,, =L,, A-BK,-L,C,

where X is comprised of the states of the beam, x. and their estimates, and K and L
are controller and observer gains (Nudehi, et al., 2004). Given a total time duration of ¢,

secs and m switchings, the problem reduces to finding the switching times
t,,i = 1,2,...,m, that satisfy 0 tI < t2 < ... <_ t,, <_ 1 and minimizes the cost function

J = f(X7QX)dt where Q is a constant positive definite matrix.
0
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Figure C]. Experimental hardware used with switching piezoelectric transducers
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Figure C2. Experimental results of cantilever beam using a single piezo transducer
switched between actuator and sensor modes: (a) uncontrolled system, (b) controlled

system with fixed switching, (c) variable switching, and (d) optimal switching.

This problem is solved using Lyapunov equations; the details of the optimization
procedure can be found in Nudehi, et al. (2004). Here we show experimental results for
m = 10 and t/,= 5.0 secs. The optimal switching instants were found to be

tJ,t2,..., t1 o =0.25,0.92, 1.46,1.91,2.27,2.96,3.47,3.94,4.23,4.74 (8)
The experimental hardware is shown in Fig.CI and the experimental results in Fig.C2.
The experimental results show that switching piezos between actuator and sensor modes
can excite higher-order unmodeled dynamics, but this problem can be remedied by using
a variable-time switching schedule (Nudehi, et al., 2004). In summary, this strategy
shows great promise in providing effective control of structural vibrations using
significantly less hardware than standard approaches.
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(D) Vibration Suppression in Flexible Structures Exploiting Modal Disparity:

The idea behind the control strategy using modal disparity is to generate energy
redistribution from a set of modes (not to be directly controlled) to a set of controlled
modes through changes in the stiffness of the system. In this manner one can cause
energy to flow from non-controlled to controlled modes in a systematic manner, thereby
providing control access to many modes of vibration while controlling only a small
number of modes. However, the change in stiffness must be done thoughtfully, since if a
non-controlled mode in one stiffness state is nearly identical to a non-controlled mode in
the other stiffness state, then modal energy will drain very slowly from these modes. For
many structures, this is indeed the case, especially for higher modes, and hence a measure
of modal disparity is needed to assess the effectiveness of this vibration control strategy.
Two specific functions have been developed (we discuss one of them here) to measure
modal disparity and we have investigated structures where stiffness variation is generated
by switching levels of tension in cables connected to specific locations in the structure.
To achieve maximum redistribution of energy, the positioning of the cables can be
selected by means of a problem in topology optimization seeking to maximize modal
disparity.

The theory is summarized as follows. A modal analysis of a structure in two stiffness
states leads to two eigenvalue problems, such as the following:
Stiffness State I : (K 0 - 2M)u = 0 (9)

Stiffness State 2: (KO + AK - pM)v = 0 (10)

where eigenpairs(u(),A) are associated with the free vibration of the baseline structure

while eigenpairs (v '),,u) are associated with the free vibration of the structure
augmented by the device used to change the structure's stiffness, e.g., cables, active joints
or links. The contribution of these devices is represented by the added stiffness term AK.

In general, the products u )Mv
j ) are not zero. Specifically, the projection of mode u(')

N

onto the space spanned by the v)s is given by u - a,v where, from orthogonality
t=l

properties of mode shapes, a, = v 'i)Mu(/). The magnitudes of these projections provide

a measure of modal disparity between the system it its two states. More formally, let Ic be
the index set of controlled modes and INC be the index set of the not-controlled modes in
the structure. When a change in stiffness is introduced, the system is switched from state
I with modes u to state 2 with modes v. The not-controlled modes 0 ), j EINc have a
projection on the space spanned by controlled modes v(', i E1c . The magnitude of this
projection is measured by I2 = a2. The situation is similar when going from

stiffness state 2 to state 1, yielding f2, = .a 2 Since the goal is to maximize

energy transfer from uncontrolled to controlled modes, our goal is to maximize

1 1 2 2

2 2f 2 , E) I=/, ,
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Figure Dl. Structure and cable system and Figure D2. Decay of not-controlled modes
solution

The example in Fig.D1 illustrates the optimization problem. The structure is tower-like
and supported (pinned) at the base. The structure is 15.24 m (600 in) tall and 5.08 m (200
in) wide at the base and has 20 members. Details are given in Diaz and Mukherjee
(2005). In this example we control mode 1, i.e. Ic={I }, and the not-controlled modes are
1u={2 ,3 ,4 }. We seek solutions with 4 cables and apply a constant tension T= 2.22 kN
(500 Ib). A maximum static deflection of 2.5 mm (0.1 in) of any node in any direction is
allowed under the cable action. The topology optimization results in a non-symmetric
cable layout that maximizes modal disparity between the two states. During free vibration
only one mode in each state is controlled, and after 20 on/off switches, the vibration
energy in all modes, including those not directly controlled, is significantly reduced (see
Fig.D2). Similar to the strategy described in part (C), this approach offers effective
vibration control with significantly fewer actuators and sensors than standard approaches.

The concept of modal disparity and redistribution of energy due to change in stiffness
was demonstrated through experiments (Issa, Mukherjee, Diaz, and Shaw). The
experimental setup, shown in Fig.D3, is a beam clamped at both ends with a mid-span
hinge that can be locked or set free by an electromagnetic brake. The stiffness of the
beam is dependent on the state of an electromagnetic brake built in the hinge. Two cases
are considered, the beam is in stiffness state a when the hinge is free and in stiffness
state P3 when the hinge is locked. Transition from on state to another is assumed to occur

over a brief interval of time and achieved by locking or releasing the hinge. Let [t a# , Ia

and t, r ]denote the transition periods from stiffness state a to 63 and from stiffness

state 83 to a. Finite elements was used to model the beam in its both states. If 1 and T
are the beam's modal matrices in state a and 83 respectively and M its mass matrix, the
modal amplitudes and velocities right before and right after the transition period are
found to be related through the following equations:
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Figure D3. Clamped-clamped beam with mid-span hinge. The hinge is locked and set
free by activating and de-activating an electromagnetic brake to change stiffness and
demonstrate modal disparity

In the above equation, pu(t) and v(t) are the vector of modal amplitudes in state a and

P5 respectively, evaluated at time t. It is clear that VIMD define the mapping between
modal coordinates during the transition from stiffness state a to stiffness state 13,

similarly its transpose (DT A, defines the mapping between modal coordinates during
the transition from stiffness state 65 to stiffness state at. These matrices define a measure
of modal disparity between the two stiffness states of the beam.

The experimental procedures are described next. A pair of piezoelectric transducers was
used for excitation and a piezoelectric strain sensor was used for sensing as shown in
Fig.D3. The amount of modal energy redistributed between the modes in the two stiffness
states matched the values calculated numerically using the mapping matrices in Eq.(I 1).
One specific experimental result is shown in Fig.D4. In this case the beam was excited at
its third mode of stiffness state a. It was switched to stiffness state 65 after termination

of the excitation. Energy was transferred from the first mode in state a to the first and
third mode of state 85. No energy was transferred to the second mode, this is due to
symmetry of the beam where the even-numbered modes are not affected by the state of
the hinge thus energy in these modes will remain in them after changing the state of the
beam.
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